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Resonant Tunneling Diode
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Goal: Determine current output for a given voltage difference V
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History of RTDs

• High frequency oscillator (THz)

• Failure due to power lost in lower frequency modes

• Searching for intrinsic oscillation

• Size of diode is measured in ångströms (10−10m)

• Device physics dominated by quantum mechanics
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Why Are We Interested in RTDs

• Novel device design

• Better understanding of quantum mechanical effects

• Potential benefits include:

– Sensor technology: THz radiation for biological/chemical

identification

– Speed: Faster data transmission/processing
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Wigner-Poisson Equation

∂f(x, k, t)

∂t
= W (f) = K(f) + P (f) + S(f)

f is the electron distribution in RTD, as a function of the electron’s

position x, momentum k, and time t

First Term: Kinetic Energy Effects

K(f) =
−hk

2πm∗

∂f

∂x

h : Planck’s Constant m∗ : Electron’s Effective Mass

NACDM 2004 6



Wigner-Poisson Equation

∂f(x, k, t)

∂t
= W (f) = K(f) + P (f) + S(f)

Second Term: Potential Energy Effects

P (f) =
−4

h

∫

∞

−∞

f(x, j)T (x, k − j)dj

T (x, k − j) =

∫ Lc

2

0

[U(x + y) − U(x − y)] sin(2y(k − j))dy

This term is nonlinear because U(x) depends on f .

U : Electric Potential Lc : Coherence Length
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Wigner-Poisson Equation

∂f(x, k, t)

∂t
= W (f) = K(f) + P (f) + S(f)

Third Term: Scattering Effects

S(f) =
1

τ
[

f0(x, k)
∫

∞

−∞
f0(x, j)dj

∫

∞

−∞

f(x, j)dj − f(x, k)]

τ : Relaxation Time f0 : Equilibrium Distribution
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Boundary Conditions

The boundary conditions of f specify the distribution of the

electrons that are entering the device.

x=0 x=L

k < 0 f (k)

f (k)1

2

x

k

(Adapted from Frensley, Phys. Rev. B, Vol. 36, 1987)

k > 0
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Obtaining U for Potential Energy Term

To obtain U from f , you need to solve the Poisson equation for

z(x), the electrostatic potential created by the electrons:
d2z
dx2 = q2

ε

[

Nd(x) − 1

2π

∫

∞

−∞
f(x, j)dj

]

z(0) = 0, z(L) = −V

Once z(x) is known, U(x) = z(x) + ∆c(x)

q : Charge of Electron ε : Dielectric Permittivity

Nd(x) : Doping Profile ∆c(x) : Potential Barriers

V : Voltage Difference
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Current Output

Want to analyze the steady-state current output as V is varied.

Basic idea is to:

  V
Set

New
V

f
steady-state

Compute
Calculate
current

Start
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Discretization

• Use finite difference method for approximation

• nx, nk - Number of x, k points on the grid

• Upwind difference scheme for ∂f

∂x

• Quadrature formula to approximate integrals

• Centered differences for Poisson’s solve

• Leads to nonlinear ODE in R
nx∗nk
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Continuation Methods

Solve nonlinear equation W (f, V ) = 0 for f ∈ R
nx∗nk .

• Determine solution branches f(V ) as a parameter V varies.

• Generates {Vi} (parameters) and corresponding {fi}

(solutions)

• Use LOCA (Library of Continuation Algorithms)
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LOCA

• Part of Trilinos - Sandia’s parallel solver project

• Makes use of several other parts of Trilinos:

– NOX : Nonlinear solver

– AztecOO : Preconditioned Krylov linear solvers

– Anasazi : Eigensolver

– Epetra : Data Structure
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Stability of Nonlinear ODEs

• Nonlinear ODE: dz
dt

= g(z)

• Steady-state solution: z∗

• How can we tell if z∗ is dynamically stable?

• The eigenvalues (λ’s) of the Jacobian g′(z∗) determine stability

– If Re(λ) < 0 for all λ, z∗ is stable

– If Re(λ) > 0 for any λ, z∗ is unstable

• LOCA incorporates an eigensolver to calculate eigenvalues
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We Want Instability

• As the parameter is varied, the eigenvalues of the Jacobian will

change

• A change in stability of equilibirum is called a bifurcation

• Want: stable steady-state to go to oscillatory behavior

• This change is a Hopf bifurcation
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Hopf Bifurcation (By Example)

Consider the two-dimensional nonlinear ODE [Kuznetsov, 1998],
(dx

dt
dy

dt

)

=

(

px − y − x(x2 + y2)

x + py − y(x2 + y2)

)

where p is a parameter

• For any p,
(

x

y

)

=
(

0

0

)

is a steady-state solution

• The Jacobian at this steady-state is




p −1

1 p





• Eigenvalues are λ = p ± i =⇒ Re(λ) = p
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Solutions to ODE
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Solution when p < 0 Solutions when p > 0

• p < 0 =⇒ origin is stable

• p > 0 =⇒ origin is unstable and oscillatory solution
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Eigenvalues Predict Hopf Bifurcation

• A Hopf bifurcation is characterized by a complex conjugate-pair

of eigenvalues crossing the real axis

• Use LOCA to find such a pair as voltage is varied

• Verify Hopf’s existence using time-integrator (Lawrence

Livermore’s VODEPK)
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Eigenvalue Results
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Time Integration Results
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Summary

• Using Wigner-Poisson Equations to model RTDs

• LOCA is used to trace-out steady-state electron distributions as

voltage varies

• Preliminary results show a voltage region where current

oscillation can be expected
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Future Work

• Grid convergence

• Hopf tracking with LOCA

• Analysis of equations/numerical methods
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